Method 1:
From experiment $1, v_{s}^{(1)}=12 \rightarrow v_{0}^{(1)}=4$
For experiment $2, V_{0}^{(2)}$ becomes (3) $V_{0}^{(1)}$

$$
\text { so, } V_{s}^{(2)} \text { should be }(3) \times v_{s}^{(1)}=48 \mathrm{~V}
$$

For experiment $3, V_{s}^{(3)}$ becomes $\frac{1}{12} v_{s}^{(1)}$ same factor

$$
\text { So, } V_{0}^{(3)} \text { should be }\left(\frac{1}{12} \times V_{0}^{(1)}=\frac{1}{12} \times 4=\frac{1}{3} \mathrm{~V}\right.
$$

For experiment $4, V_{0}^{(4)}$ becomes $-\frac{1}{2} v_{0}^{(1)}$

$$
\text { So, } V_{s}^{(4)} \text { should be }-\frac{1}{2} V_{s}^{(1)}=-\frac{1}{2} \times 12=-6 \mathrm{~V}
$$

Method 2:
Consider two experiments on the same linear circuit:

Input
Output

$$
\begin{aligned}
& v_{s}^{(1)} \rightarrow \text { Linear Clicwit } \rightarrow V_{0}^{(1)} \\
& v_{s}^{(2)} \rightarrow \text { Linear Circuit } \rightarrow V_{0}^{(2)}
\end{aligned}
$$

If we write $V_{s}^{(2)}=\frac{v_{s}^{(2)}}{v_{s}^{(1)}} \times v_{s}^{(1)}$, then

$$
\begin{aligned}
& v_{0}^{(2)} \text { should be } \\
& \frac{v_{s}^{(2)}}{(1)} \times v_{0}^{(1)}
\end{aligned}
$$

$$
\frac{v_{s}^{(2)}}{v_{s}^{(1)}} \times v_{0}^{(1)}
$$

Hence,

$$
\frac{V_{0}^{(2)}}{V_{s}^{(2)}}=\frac{V_{0}^{(1)}}{V_{s}^{(1)}}=\frac{V_{0}^{(3)}}{V_{s}^{(3)}}=\frac{V_{0}^{(4)}}{V_{s}^{(4)}}
$$

In other words, $\frac{V_{0}}{V_{s}}$ should be constant for all experiments.
From experiment 1, we have $\frac{V_{0}}{V_{s}}=\frac{4}{12}=\frac{1}{3}$.

From experiment 1, we have $\frac{v_{0}}{V_{s}}=\frac{4}{12}=\frac{1}{3}$.
For experiment 2, we should have $\frac{V_{0}}{V_{s}}=\frac{16}{V_{s}}=\frac{1}{3} \Rightarrow V_{s}=3 \times 16=48 \mathrm{~V}$

For experiment 3 , we should have $\frac{v_{0}}{V_{s}}=\frac{v_{0}}{1}=\frac{1}{3} \Rightarrow v_{0}=\frac{1}{3} \mathrm{~V}$

For experiment 4 , we should have $\frac{v_{0}}{V_{s}}=\frac{-2}{v_{s}}=\frac{1}{3} \Rightarrow v_{s}=-2 \times 3=-6 \mathrm{~V}$
[Alexander and Sadiku, 2009, Q4.8]: Superposition; Two
Voltage Sources

We will activate one source at a time
a) When the $9 v$ is on, the circuit becomes


Note that the $9 \Omega$ and $1 \Omega$ are in parallel. Hence, we have


By the voltage divide, formula, $v_{0}=\frac{0.9}{3+0.9} \times 9=\frac{0.9}{3.9} \times 9=\frac{27}{13} \mathrm{~V}$ Refer to this by $V_{0}^{(a)}$
b) When the $3 V$ is on, the circuit becomes

is turned off and becomes a hoot circuit.

Note that the $9 \Omega$ and $3 \Omega$ are in parallel. Hence, we have

$$
\text { ( }+3 v
$$

By tu voltage divider formula, $V_{0}=\frac{\frac{9}{4}}{9} \times 3=\frac{9}{9+4} \times 3=\frac{27}{13} \mathrm{~V}$

By tr e voltage divider formula, $V_{0}=\frac{\frac{9}{4}}{\frac{9}{4}+1} \times 3=\frac{9}{9+4} \times 3=\frac{27}{13} \mathrm{~V}$
Refer to this by $V_{0}^{(b)}$.
c) By superposition theorem, $V_{0}=V_{0}^{(a)}+V_{0}^{(b)}=\frac{27}{13}+\frac{27}{13}=\frac{54}{13} \mathrm{~V} \approx 4.154 \mathrm{~V}$
a) when only $\leftrightarrow$ is on:


c) When only $\underset{38 V}{ }$ is on,


$$
\left.\begin{array}{l}
\text { Here, let's try nodal analys is: } \\
K C L @ A: \frac{V_{A}}{6}+\frac{V_{A}}{3}+\frac{V_{A}-V_{B}}{5}=0 \\
K C L @ B: \frac{V_{B}-V_{A}}{5}+\frac{V_{B}}{12}+\frac{V_{B}-38}{4}=0
\end{array}\right\} \Rightarrow \begin{aligned}
& V_{A}=\frac{57}{10} \\
& V_{B}=\frac{399}{20} \\
& \Rightarrow V_{0}=V_{A}-V_{B}=\frac{57}{10}-\frac{399}{20}=-\frac{57}{4} V \approx-14.25 \mathrm{~V}
\end{aligned}
$$

d) By superposition theorem,

$$
V_{0}=10+4+(-14.25)=-0.25 \mathrm{~V}=-250 \mathrm{mV}
$$

Transformation; Two Voltage Sources and One Current
Source
Monday, July 1, 2013 3:56 PM
In this class, when possible, we will try to solve any problem that requires the use of source transformation by successive applications of

1) source transformations
2) resistor combinations) and/or source combinations)

The voltage and/or the current of interest can be found by applying the voltage or current divider formula in the last step.


$$
\underset{a}{0} \min _{R_{1}} \min _{R_{2}} \min _{R_{e c s}}=\sum_{i=1}^{n} R_{i}
$$

Here, terminals $a-b$ are across the $12 \Omega$. The 160 V voltage source is the $\Gamma$ ?

Here, terminals $a-b$ are across the $12 \Omega$. The 160 V voltage source is the in the generalization above. Therefore, although the $8 \Omega$ and $20 \Omega$ are not connected directly in series, they are "in series= from the point of view of terminals $a-b$.

Finally, by the voltage divider formula, $V_{x}=-\frac{12}{12+28} \times 160=-48 \mathrm{~V}$

In this class, when possible, we will try to solve any problem that requires the vie of source transformation by successive applications of

1) source transformations
2) resistor combinations) and/or source combination (s)

The voltage and/or the current of interest can be found by applying the voltage or current divider formula in the last step.


$$
i=\frac{\frac{1}{4}}{\frac{1}{4}+\frac{1}{5}} \times 1=\frac{5}{9} A
$$

current divider formula

